SDOCT Thickness Measurements of Various Retinal Layers in Patients with Autosomal Dominant Optic Atrophy due to OPA1 Mutations

نویسندگان

  • Andrea M. Schild
  • Tina Ristau
  • Julia Fricke
  • Antje Neugebauer
  • Bernd Kirchhof
  • Srinivas R. Sadda
  • Sandra Liakopoulos
چکیده

PURPOSE To specify thickness values of various retinal layers on macular spectral domain Optical Coherence Tomography (SDOCT) scans in patients with autosomal dominant optic atrophy (ADOA) compared to healthy controls. METHODS SDOCT volume scans of 7 patients with ADOA (OPA-1 mutation) and 14 healthy controls were quantitatively analyzed using manual grading software. Mean thickness values for the ETDRS grid subfields 5-8 were calculated for the spaces neurosensory retina, retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), a combined space of inner plexiform layer/outer plexiform layer/inner nuclear layer (IPL+INL+OPL), and a combined space of outer nuclear layer/photoreceptor layers (ONL+PL). RESULTS ADOA patients showed statistically significant lower retinal thickness values than controls (P < 0.01). RNFL (P < 0.001) and GCL thicknesses (P < 0.001) were significantly lower in ADOA patients. There was no difference in IPL+INL+OPL and in ONL+PL thickness. CONCLUSION Manual subanalysis of macular SDOCT volume scans allowed detailed subanalysis of various retinal layers. Not only RNFL but also GCL thicknesses are reduced in the macular area of ADOA patients whereas subjacent layers are not involved. Together with clinical findings, macular SDOCT helps to identify patients with suspicion for hereditary optic neuropathy before genetic analysis confirms the diagnosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations.

PURPOSE To study the electroretinographic (ERG) findings in patients with autosomal dominant optic atrophy (ADOA) with OPA1 mutations. METHODS Eight ADOA patients (age range, 24-55 years; mean, 41 years) with OPA1 mutations were studied. In addition to routine ophthalmological tests, full-field ERGs including the rod response, mixed rod-cone response, oscillatory potentials (OPs), single-flas...

متن کامل

Optic atrophy plus phenotype due to mutations in the OPA1 gene: Two more Italian families

Autosomal Dominant Optic Atrophy (ADOA) is characterized by the selective degeneration of retinal ganglion cells. The occurrence of mutations in the gene encoding the dynamin-like GTPase protein Optic Atrophy 1 (OPA1) has been observed in about 60-70% of ADOA cases. A subset of missense mutations, mostly within the GTPase domain, has recently been associated with a syndromic ADOA form called "O...

متن کامل

Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy

PURPOSE Autosomal dominant optic atrophy (ADOA) is the most common form of hereditary optic neuropathy caused by mutations in the optic atrophy 1 (OPA1) gene. It is characterized by insidious onset with a selective degeneration of retinal ganglion cells, variable loss of visual acuity, temporal optic nerve pallor, tritanopia, and development of central, paracentral, or cecocentral scotomas. Her...

متن کامل

A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family

Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OP...

متن کامل

The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms.

Opa1 modulates mitochondrial fusion, cristae structure and apoptosis. The relationships between these functions and autosomal dominant optic atrophy, caused by mutations in Opa1, are poorly defined. We show that Bnip3 interacts with Opa1, leading to mitochondrial fragmentation and apoptosis. Fission is due to inhibition of Opa1-mediated fusion and is counteracted by Opa1 in an Mfn1-dependent ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013